
Fast and Flexible Multivariate Time Series Subsequence Search

Kanishka Bhaduri
MCT Inc., NASA ARC

Kanishka.Bhaduri-1@nasa.gov

Qiang Zhu
CSE Dept, UCR
qzhu@cs.ucr.edu

Nikunj C. Oza, Ashok N. Srivastava
NASA Ames Research Center

{Nikunj.C.Oza, Ashok.N.Srivastava}@nasa.gov

Abstract—Multivariate Time-Series (MTS) are ubiquitous,
and are generated in areas as disparate as sensor record-
ings in aerospace systems, music and video streams, medical
monitoring, and financial systems. Domain experts are often
interested in searching for interesting multivariate patterns
from these MTS databases which can contain up to several
gigabytes of data. Surprisingly, research on MTS search is
very limited. Most existing work only supports queries with
the same length of data, or queries on a fixed set of variables.
In this paper, we propose an efficient and flexible subsequence
search framework for massive MTS databases, that, for the
first time, enables querying on any subset of variables with
arbitrary time delays between them. We propose two provably
correct algorithms to solve this problem — (1) an 𝑅∗-tree
Based Search (RBS) which uses Minimum Bounding Rectangles
(MBR) to organize the subsequences, and (2) a List Based
Search (LBS) algorithm which uses sorted lists for indexing.
We demonstrate the performance of these algorithms using two
large MTS databases from the aviation domain, each containing
several millions of observations. Both these tests show that our
algorithms have very high prune rates (>95%) thus needing
actual disk access for only less than 5% of the observations.
To the best of our knowledge, this is the first flexible MTS
search algorithm capable of subsequence search on any subset
of variables. Moreover, MTS subsequence search has never
been attempted on datasets of the size we have used in this
paper.

I. INTRODUCTION

Many data mining application domains generate large
multivariate time series (MTS) databases. Examples of
such domains include earth sciences, music, video, medical
monitoring, aerospace systems, and financial systems. Do-
main experts are often interested in searching for particular
patterns—waveforms over subsets of variables with some
delays between them.

The motivation for this research comes from applications
in any domain where an entity can be described as a multi-
variate sequence and one needs to search for entities having
specific characteristics defined by a particular combination
of some or all of those features. Suppose that an airline has
a large database of one million flights of multivariate time
series that show the settings of the control surfaces (usually
discrete signals), the pilot inputs (discrete), as well as the
heading, speed, and readings from the propulsion systems
(all usually continuous). In many such databases, the number
of recorded parameters from a modern aircraft is nearly
1000. The safety analyst may want to find all situations in

the database that correspond to a “go-around” situation in
which a landing has been aborted and the aircraft has been
directed to circle back for another landing.

One can find such situations using a subset of the fields
in the time series database where the event “Landing Gear
Retracted” occurs just after altitude descends below 2000
feet. Another search for indicators of an “unstable approach”
may include searching on parameters such as speed, descent
rate, vertical flight path, and several cockpit configuration
parameters. Again, this search would be done on about a
dozen parameters out of the 1000 parameters that may be
recorded on the aircraft. The events would be separated in
time and may or may not occur on a particular flight.

Fig. 1 shows an MTS from a real aviation dataset of
CarrierX 1. Each MTS contains the data collected from
multiple sensors of an aircraft during a flight. We plot only
six variables for clarity. In the figure, the 𝑥-axis refers to
the different parameters while the 𝑦-axis refers to time.
Typically, queries by the analyst may look like:

1. Return all flights where the altitude monotonically
changes from 10000 ft to 5000 ft, speed decreases from
300 knots to 200 knots, and landing gear is down. Such
a combination of parameter values may be precursors to
unstable approaches while landing.

2. Return all small-cap stocks whose daily price drops
by 10% over 3 days just before a strong sell-off (30% over
10 days) in at least 𝑚 out of 𝐾 stocks and then increases
by at least 15% over the remaining 30 days. This could
be a signature indicative of insider-trading in an attempt to
unfairly control the share prices in the specific sector.

None of the current research in MTS search [1][2][3][4]
support the types of queries described here. Current algo-
rithms in this area require that the query be of the same
length as that of the entire MTS and that all queries be on a
fixed set of variables (usually all the variables). Additionally,
current algorithms do not allow for any time lag between the
variables in the query.

In this paper we address the following problem: given a
large database of multivariate time series data representing
entities, we wish to provide a search technology that allows
analysts to rapidly identify entities with particular character-

1We cannot release the name of the carrier due to the data sharing
agreement.

2010 IEEE International Conference on Data Mining

1550-4786/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDM.2010.36

48



0

1000

2000

3000

4000

5000

Parameters

T
im

e

 

 

δ
2

q[t5:t6],4

q[t3:t4],3

q[t1:t2],1

δ
1

Figure 1. Sample MTS dataset and query 𝑄. 𝑥-axis refers to different
parameters and 𝑦-axis refers to time. Components of query and time delays
are also shown.

istics such as the scenarios described above. We assume that
the user supplies a query consisting of waveforms over sev-
eral variables — typically substantially fewer than the total
number of variables present in the database. Additionally,
the user may choose (at search time) how many and which
variables to query, i.e., this need not be fixed in advance
(during index-building time). This requires tremendous flex-
ibility of the search algorithm. Also the query may cover
any desired length of time up to the maximum length of the
available time series. The waveforms may have some time-
shifts between them. The user also supplies a threshold for
each variable describing the maximum allowable difference
between the query variable and the corresponding variable in
any matches that are returned. The MTS search algorithm
must return all matches with no false dismissals or false
positives. The specific contributions of this paper are as
follows:
(1) We propose two algorithms — an 𝑅∗-tree based search
algorithm (𝑅𝐵𝑆), and a list based search algorithm (𝐿𝐵𝑆)
for efficient searching of massive MTS subsequences defined
on an arbitrary subset of variables with arbitrary time delays.
(2) We have demonstrated the usefulness of our algorithm by
searching for this “go around” pattern in a real commercial
aviation dataset.
(3) To the best of our knowledge, the datasets that we have
used for testing the performance of our algorithms are much
larger than those reported in the literature.

The rest of the paper is organized as follows. In Section II,
we discuss work related to this area of research. In Section
III, we describe the notation and give a precise definition
of the MTS search problem. In Section IV we describe a
fast UTS subsequence search algorithm leading to the MTS
search algorithm in Section V. We analyze the algorithms in
Section VI. In Section VII we demonstrate the performance
of our algorithm experimentally. We provide conclusions and
descriptions of future work in Section VIII.

II. RELATED WORK

In general, prior research on MTS is limited. Yang and
Shahabi [1] present a PCA-based similarity technique for
comparing two MTS. Given a database of MTS this tech-
nique first computes the covariance matrix between two
MTS. Then eigenvectors and eigenvalues of the covariance
matrix are used as a measure of similarity between the
MTS. This work is extended in [5] in which the authors
propose the use of kernel PCA instead of traditional PCA.
Distance-based index structure for MTS has been discussed
by Yang and Shahabi [6]. The work by Lee et al. [4]
addresses the problem of searching in multi-dimensional
sequences. The multi-dimensional sequence is partitioned
into subsequences, packed into MBR and then indexed using
the 𝑅∗-tree scheme. Vlachos et al. [3] proposes an index
structure for multi-dimensional time series which can handle
multiple distance functions such as LCSS and DTW.

There exist a plethora of work on subsequence search for
univariate datasets (UTS). Popular techniques for performing
entire length time series search include the ones proposed by
Keogh and Ratanamahatana [7] and the references therein.
One of the early works of subsequence matching is by
Faloutsos et al. (FRM) [8] in which the authors have
proposed a Discrete Fourier Transform (DFT)/𝑅∗-tree based
indexing scheme. In this algorithm, input time series is first
broken into overlapping window sequences of fixed length
and then 6 DFT coefficients are extracted from each se-
quence. These 6-dimensional representations are then packed
into a minimum bounding rectangle (MBR) and indexed
using an 𝑅∗-tree data structure. On receiving a query, the
same process is applied (extracting DFT coefficients) and
then searched in the 𝑅∗-tree. Candidate MBRs are then
checked with the actual database to remove false alarms.
We compare this algorithm with our algorithms in the
experimental section. A dual approach to this one, proposed
by Moon et al. [9], is to decompose the input time series
into disjoint sequences and the query sequence into sliding
windows. However, as the size of the time series increases
to millions of points, storing all the points in the index
may become challenging. To alleviate this problem, Traina
et al. [10] recently proposed a technique of using multiple
reference points to speed up the search. Our algorithm is
different than theirs in the following sense: (1) [10] only
talks about range queries whereas we can perform arbitrary
subsequence matching and nearest neighbor search, and (2)
unlike [10] which only works for univariate time series, we
can perform multivariate subsequence search on an arbitrary
number of variables and arbitrary time delays among those
variables. Several other techniques exist for subsequence
matching [11][12][13].

At this point, we would like to mention that none of the
existing algorithms for multivariate search is applicable in
our problem setting. This is primarily because most of them

49



require that all the variables be used for the query. In our
problem, we query over an arbitrary subset of variables and
thus, to apply the existing algorithms, we need build and
store a separate index for all possible combinations of input
features. For example, the real CarrierX dataset that we
have used in our experiments has 16 variables, and therefore
to allow any subset of variables in the query, we need to
build and store 216 = 65536 indices which is impractical
for storage and computational reasons. This motivates us to
provide a different solution to this problem which alleviates
these issues by building a much smaller number of indices
(linear in the number of features).

III. BACKGROUND

In this section we define the notations that we have used
in the rest of this paper and also present a formal problem
definition.

A. Notations

First, we define a UTS database. A UTS database 𝑈 𝐷𝐵
consists of ∣𝐷∣ UTS. For ease of explanation, we assume
that each UTS is stored in a separate file; multiple UTS can
also be stored in the same file in other applications. The
𝑖-th file stores a time series 𝑦(𝑖) = {𝑦(𝑖)1 , 𝑦

(𝑖)
2 , . . . }, where

each 𝑦
(𝑖)
𝑘 ∈ ℝ or {0, 1}. The superscript refers to the file id

while the subscript refers to the sample point in that file. Let
𝑦(𝑖) and 𝑦(𝑗) be two UTS sequences in two different files
of 𝑈 𝐷𝐵. Then, (1) 𝐿

(
𝑦(𝑖)

)
denotes the length (number

of points) of 𝑦(𝑖), (2) 𝑦(𝑖)[𝑎:𝑏] denotes the subsequence that
includes entries in positions 𝑎 through 𝑏 for UTS in the 𝑖-th
file, and (3) 𝑑𝑖𝑠𝑡(𝑦(𝑖)[𝑎:𝑏], 𝑦(𝑗)[ 𝑎 : 𝑏]) denotes the Euclidean
distance between two univariate subsequences.

It is natural to extend this definition to a multivariate
database 𝑀 𝐷𝐵 in which each file contains a set of vectors.
Let 𝑑 be the number of features or attributes across all the
files in 𝑀 𝐷𝐵. Denoting vectors of dimension 𝑑 in bold,
we can similarly write the MTS stored in the 𝑖-th file as
y(𝑖) = {y(𝑖)

1 ,y
(𝑖)
2 , . . . }, where y(𝑖)𝑘 ∈ ℝ

𝑑 or {0, 1}𝑑. Let 𝑤
denote the size of a sliding window containing 𝑤 consecutive
samples of a UTS.

B. Problem definition

We first define 𝜖 nearest neighbors 𝜖-NN of UTS.
Definition 3.1 (𝜖-NN UTS search): Given a user defined

threshold 𝜖, 𝑈 𝐷𝐵, and a UTS subsequence 𝑄 of length
𝑤, (which we call the query), UTS 𝜖-NN returns all the
subsequences 𝑆𝑖 of length 𝑤 from 𝑈 𝐷𝐵, such that,
𝑑𝑖𝑠𝑡(𝑆𝑖, 𝑄) < 𝜖.
Our next definition deals with multivariate query 𝑄.

Definition 3.2 (Multivariate Query 𝑄): A multivariate
query 𝑄 consists of the following components:
∙ any (sub)set of variables 𝑄.𝑣𝑎𝑟 ⊂ {1, . . . , 𝑑}
∙ a set of UTS subsequences {𝑄.𝑠𝑒𝑞𝑖} for each variable
𝑖 ∈ 𝑄.𝑣𝑎𝑟, and

∙ time delays 𝛿1, 𝛿2, . . . between the sequences in 𝑄.𝑣𝑎𝑟

We are now in a position to define 𝜖-NN for MTS search.
Definition 3.3 (𝜖-NN MTS search): Given 𝑀 𝐷𝐵,

a multivariate query 𝑄, and user defined thresholds
𝝐 = {𝜖1, 𝜖2, . . . } for each variable in 𝑄, MTS 𝜖-NN returns
a table {𝑀𝑇𝑆 𝑖,𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡1, 𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡2, . . . , }
such that (1) UTS 𝜖-NN is satisfied by every feature in 𝑄,
(2) the subsequences are found in the same MTS file, and
(3) the Begin offset’s are delayed by 𝛿1, 𝛿2, . . . in which
𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡𝑗 denotes the starting time point for Q.seq𝑗 .

IV. FAST UTS SUBSEQUENCE SEARCH

When a query 𝑄 defined in Section III-B contains only
one variable, it becomes a univariate time series search. For
clarity and ease of exposition, we will start with solving
this problem. We assume there is a minimal length for all
queries and it is set to 𝑤. Smaller choice of 𝑤 provides better
granularity of search while increasing both the indexing and
the search time. We first discuss the 𝑅𝐵𝑆 algorithm in
detail and then discuss the salient differences with our 𝐿𝐵𝑆
algorithm.

A. Overview of algorithm

For a univariate query 𝑄 on the 𝑣-th variable, the brute-
force method to find all its 𝜖-NN is to compare it with
all subsequences of length 𝐿(𝑄) for every offset of time
series 𝑦(𝑖) (∀𝑖 = 1, 2, . . . , ∣𝐷∣), which is time consuming
and impractical.

A classic data mining solution to speed up this process
is to find a lower bound of the distance measure and
use this bound to prune irrelevant candidates. This lower
bound should be: (1) computationally more efficient than
computing the distances between all subsequences, and (2)
tight (very close) with respect to the original distance, so
that we can prune sufficiently.

One such technique for deriving a lower bound, also used
in the literature [10][14], is using a reference subsequence
based on the triangle inequality. Fig. 2 illustrates the basic
idea of pruning. First, we randomly pick a subsequence
𝑅 (of the same length 𝑤), and calculate its distance to
all the remaining subsequences. Then, we order them by
their distance to 𝑅. Only 𝑆1 and 𝑆2 are shown for clarity
in the figure. Note that these two steps are done before
the query 𝑄 arrives and only need to be done once.
When a query 𝑄 is applied, we calculate the distance
𝑑𝑖𝑠𝑡(𝑄,𝑅). All candidates whose distances are not in the
range [𝑑𝑖𝑠𝑡(𝑄,𝑅) − 𝜖, 𝑑𝑖𝑠𝑡(𝑄,𝑅) + 𝜖] (e.g. 𝑆2 in Fig. 2)
can be pruned. This is due to the triangle inequality:

𝑑𝑖𝑠𝑡(𝑄,𝑆2) ≥ ∣𝑑𝑖𝑠𝑡(𝑄,𝑅)− 𝑑𝑖𝑠𝑡(𝑆2, 𝑅)∣ > 𝜖.

Finally, for all candidates in this range (e.g. 𝑆1 in Fig. 2),
we do an exact calculation to remove the false positives. In
order to reduce the number of such false positives, we use
multiple reference points to build several indices and then

50



join the candidates from these indices to get the final set of
candidates. We discuss this in detail in the next section.

𝑆2𝑄𝑆1𝑅

- 𝜖 + 𝜖𝑑𝑖𝑠𝑡(𝑄,𝑅)

Figure 2. Candidate subsequences (𝑆1, 𝑆2) ordered by their distance to
a reference subsequence 𝑅. When a query 𝑄 is applied, a range based on
𝑑𝑖𝑠𝑡(𝑄,𝑅) can be used to prune candidates.

B. RBS algorithm details

𝑅∗-tree based algorithm (𝑅𝐵𝑆) uses the concept of spa-
tial indexing to store and retrieve time series subsequences.
In order to make this indexing more efficient, we devise
a novel technique of incorporating the triangular inequal-
ity directly into this 𝑅∗-tree scheme. We can control the
amount of pruning and the corresponding search time by
using multiple reference points against which the triangular
inequality is applied. To the best of our knowledge, using
spatial indexing along with multiple global reference points
for time series subsequence search has never been explored
before.

We first discuss the index building algorithm followed
by the search algorithm. Alg. 1 presents the pseudo-code
of 𝑅𝐵𝑆 build index. The inputs are 𝑈 𝐷𝐵 and length
of the sliding window 𝑤. The output is a set of spatial
indices 𝐼𝑛𝑑𝑒𝑥1, . . . , 𝐼𝑛𝑑𝑒𝑥𝑟. In the first step, we select 𝑟
subsequences randomly 𝑅1, . . . , 𝑅𝑟 of size 𝑤 from 𝑈 𝐷𝐵
which we call reference points. Then, for each subsequence
𝑆 of length 𝑤 from the 𝑖-th UTS (𝑦(𝑖)) in 𝑈 𝐷𝐵, we find
the Euclidean distance of 𝑆 from the 𝑘-th reference point
𝑅𝑘. Therefore, each subsequence of length 𝑤 gets mapped
to a 1-D point (its distance to 𝑅𝑘). Next, we arrange several
such 1-D points into a minimum bounding rectangle or MBR
as follows. Each entry of the MBR consists of the 𝑢𝑡𝑠 𝑖𝑑,
𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝐵𝑒𝑔𝑖𝑛 𝑂𝑓𝑓𝑠𝑒𝑡, 𝐸𝑛𝑑 𝑂𝑓𝑓𝑠𝑒𝑡, where 𝑚𝑖𝑛 and
𝑚𝑎𝑥 are the minimum and maximum values (here distances
to 𝑅𝑘) of all points included in that MBR. 𝐵𝑒𝑔𝑖𝑛 𝑂𝑓𝑓𝑠𝑒𝑡
and 𝐸𝑛𝑑 𝑂𝑓𝑓𝑠𝑒𝑡 are the beginning and end time points of
all the elements in this MBR. For any UTS, the first point
included in the MBR is trivially {𝑢𝑡𝑠 𝑖,𝐷𝑖𝑠𝑡,𝐷𝑖𝑠𝑡, 1, 1},
where 𝐷𝑖𝑠𝑡 is the distance of the first sequence to 𝑅𝑘.
For all other subsequences, we first compute 𝐷𝑖𝑠𝑡, and then
check if adding this point to the existing MBR will increase
its marginal cost, a heuristic proposed by Faloutsos et al.
[8]. Due to shortage of space we do not describe it here.
If the new marginal cost (after adding the new point) is
greater than the old cost (without the point), a new MBR
is started with this new point as the sole entry, else the old
MBR is updated. The CheckMC routine in the pseudo code
performs this task. Once all the subsequences of 𝑢𝑡𝑠 𝑖 are

processed, all the MBR’s are appended to file 𝑚𝑏𝑟𝑘 and the
next UTS is processed. Finally, each of these 𝑚𝑏𝑟𝑘 files are
indexed using an RTreeBuild routine and the spatial indices
are saved on disk.

We would like to point out that while Faloutsos et al. [8]
also use MBR to combine subsequences to reduce the index
space, they map each subsequence into 6 DFT coefficients
while we map each subsequence into a single value viz.
distance to the reference point. So in our case, each MBR
is a two dimensional point, leading to better scalability.

Algorithm 1: Build Index for 𝑅𝐵𝑆
Input: 𝑈 𝐷𝐵, 𝑤
Output: Indices 𝐼𝑛𝑑𝑒𝑥1, . . . , 𝐼𝑛𝑑𝑒𝑥𝑟
Initialization: Select 𝑟 reference points 𝑅1, . . . , 𝑅𝑟 ;
begin

for k = 1 to r do
for uts i in UTS Database do

𝑛𝑀𝐵𝑅← 1;
𝐷𝑖𝑠𝑡← 𝑑𝑖𝑠𝑡(𝑅𝑘, 𝑦

𝑢𝑡𝑠 𝑖
[1:𝑤]

);
𝑚𝑏𝑟(𝑛𝑀𝐵𝑅)← {𝑢𝑡𝑠 𝑖,𝐷𝑖𝑠𝑡,𝐷𝑖𝑠𝑡, 1, 1};
𝑀𝑎𝑥𝑂𝑓𝑓𝑠𝑒𝑡← (𝐿(𝑢𝑡𝑠 𝑖)− 𝑤 + 1);
for j = 2 to MaxOffset do

𝐷𝑖𝑠𝑡← 𝑑𝑖𝑠𝑡(𝑅𝑘, 𝑦
𝑢𝑡𝑠 𝑖
[𝑗:𝑗+𝑤−1]

);
[𝑢𝑑, 𝑛𝑒𝑤𝑀𝐵𝑅]← CheckMC(𝑚𝑏𝑟, 𝐷𝑖𝑠𝑡);
if 𝑢𝑑 == 0 then 𝑛𝑀𝐵𝑅 = 𝑛𝑀𝐵𝑅+ 1;
𝑚𝑏𝑟(𝑛𝑀𝐵𝑅)← 𝑛𝑒𝑤𝑀𝐵𝑅;

Append 𝑚𝑏𝑟 to file 𝑚𝑏𝑟𝑘;

𝐼𝑛𝑑𝑒𝑥𝑘 ← RTreeBuild(𝑚𝑏𝑟𝑘);
Save 𝐼𝑛𝑑𝑒𝑥𝑘, 𝑅𝑘;

When a query 𝑄 of length 𝑤 is provided, we use the
search code shown in Alg. 2. The inputs in this case are
the UTS query 𝑄, 𝑈 𝐷𝐵, the set of indices, the set of
reference points, 𝑤, and 𝜖. The output is 𝜖-NN of 𝑄. First,
for each reference point 𝑅𝑘, we find the distance 𝐷𝑘 of the
query from it. Then we perform a range query search {𝐷𝑘−
𝜖,𝐷𝑘+ 𝜖} using the RTreeSearch routine. We call this step
the first level of pruning. The output of the search code are
a set of candidate MBR’s which intersect the query MBR.
In the second level of pruning, we intersect the candidate
MBRs found using different reference points. This reduces
the number of false alarms dramatically as we show in our
experiments, leading to very high prune rate and very low
search time. Once a compact candidate set is found, we do
disk access to retrieve those candidates and remove false
alarms.

We now discuss how 𝑅𝐵𝑆 handles queries longer than
𝑤 in the following two cases:

∙ 𝐿(𝑄) = 𝑛𝑤 (𝑛 > 1): We first divide 𝑄 into 𝑛 disjoint
subsequences of length 𝑤, and search the indices set for
each of them with the threshold 𝜖/

√
(𝑛). Finally, we

do an exact calculation of full length candidates (over
all 𝑛 parts) to remove false alarms. The correctness of
this approach relies on the following Theorem [8].

51



Algorithm 2: 𝑅𝐵𝑆 𝜖-NN Search on UTS
Input: 𝑈 𝐷𝐵, 𝑄, 𝐼𝑛𝑑𝑒𝑥1, . . . , 𝐼𝑛𝑑𝑒𝑥𝑟 , 𝑅1, . . . , 𝑅𝑟 , 𝑤, 𝜖
Output: 𝜖-NN of 𝑄
begin

𝜖-NN ← ∅;
for 𝑘 = 1 to 𝑟 do

𝐷𝑘 = 𝑑𝑖𝑠𝑡(𝑄.𝑠𝑒𝑞1, 𝑅𝑘);
𝐶𝑎𝑛𝑑𝑘 = RTreeSearch(𝐼𝑛𝑑𝑒𝑥𝑘, {𝐷𝑘 − 𝜖,𝐷𝑘 + 𝜖});

𝐶𝑎𝑛𝑑𝐴𝑙𝑙← {∩𝑟
𝑘=1 𝐶𝑎𝑛𝑑𝑘};

forall the {𝑢𝑡𝑠 𝑖, 𝑏, 𝑒} ∈ 𝐶𝑎𝑛𝑑𝐴𝑙𝑙 do
Fetch 𝑦(𝑢𝑡𝑠 𝑖)

[𝑏:𝑒]
from 𝑢𝑡𝑠 𝑖 file on disk;

𝐷𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡(𝑦
(𝑢𝑡𝑠 𝑖)
[𝑏:𝑒]

, 𝑄.𝑠𝑒𝑞1);
if 𝐷𝑖𝑠𝑡 ≤ 𝜖 then 𝜖-NN ← 𝜖-NN

∪{𝑢𝑡𝑠 𝑖, 𝑏, 𝑒};

Theorem 4.1: If 𝑑𝑖𝑠𝑡(𝑄,𝑆) < 𝜖, then for at least one
pair of disjoint sequences 𝑄𝑖 and 𝑆𝑖 of length 𝑤, we
have 𝑑𝑖𝑠𝑡(𝑄𝑖, 𝑆𝑖) < 𝜖/

√
(𝑛).

∙ 𝐿(𝑄) = 𝑛𝑤 + 𝑣 (0 < 𝑣 < 𝑤): We can ignore the
last subsequence of length 𝑣 and perform search on
the 𝑛𝑤 disjoint subsequences as described before. We
only consider the last subsequence when we perform
the exact calculation.

C. 𝐿𝐵𝑆 algorithm details

In RBS, the smallest unit of search is an MBR. Now,
for one reference point, RBS has a prune rate directly
proportional to the number of MBR’s searched times the
number of points in that MBR. Although the search time for
RBS can be very low, large sizes of candidate set increase the
overall search time to fetch all the potential candidates from
the disk. To alleviate this problem, we present another novel
algorithm LBS, in which the search unit is a subsequence
in the input space. This algorithm directly exploits the
triangular inequality to effectively prune bad candidates by
choosing a random subsequence as a reference subsequence.
Moreover, to increase the prune rate further, we have used
multiple reference points.

As before, the inputs to LBS are 𝑈 𝐷𝐵 and length of
the sliding window 𝑤. The output is a set of sorted lists
as indices. In the first step, similar to RBS, we compute
the distances of all the subsequences from a few reference
points 𝑅1, . . . , 𝑅𝑟. We store these distances (as the key)
along with the offset and 𝑈𝑇𝑆−𝑖𝑑 into a list called 𝐼𝑛𝑑𝑒𝑥𝑘,
for reference point 𝑅𝑘. In the next step we simply sort these
𝑘 lists and store them along with the reference points.

During searching, when a query 𝑄 of length 𝑤 is pro-
vided, for each reference point 𝑅𝑘, we find the distance
𝐷𝑖𝑠𝑡𝑘 of the query from 𝑅𝑘. Then we collect those candi-
dates from 𝐼𝑛𝑑𝑒𝑥𝑘 whose key (distance) lies in the range
𝐷𝑖𝑠𝑡𝑘 ± 𝜖. This is a direct application of the triangle
inequality. As before, we intersect the candidate sets for
all the reference points finally do a disk access to remove
false alarms. We do not present the pseudo-code here due
to shortage of space.

V. FLEXIBLE MTS SUBSEQUENCE SEARCH

We now describe our algorithm for MTS query search. In
our problem setting, we have substantially more variables to
index compared to the number of variables given in a typical
query. Moreover, the query variables are not known apriori
which severely restricts the use of existing MTS search
algorithms. The algorithm we propose here has excellent
performance for the multivariate queries that we want to
execute.

As before, we split the discussion into two parts. The
index building algorithm is very similar to the one presented
for UTS search. Alg. 3 presents the pseudo code. The first
step is to decompose the MTS database 𝑀 𝐷𝐵 into a series
of univariate time series databases 𝑈 𝐷𝐵(1), . . . 𝑈 𝐷𝐵(𝑑),
one for each feature in the MTS. Then we select 𝑟 reference
points for each UTS independently, and use Alg. 1 to build
indices for each of the 𝑑 UTS’s. Thus for 𝑑 features, we will
have 𝑑 × 𝑟 number of sorted lists for 𝐿𝐵𝑆 algorithm and
𝑑× 𝑟 number of 𝑅∗-trees for 𝑅𝐵𝑆. We store these indices
along with the reference points on disk.

Algorithm 3: MTS Build Index using 𝑅𝐵𝑆
Input: 𝑀 𝐷𝐵, 𝑤
Output: 𝐼𝑛𝑑𝑒𝑥 for MTS search
begin

Convert 𝑀 𝐷𝐵 into 𝑈 𝐷𝐵(1), . . . , 𝑈 𝐷𝐵(𝑑);
for f = 1 to d do // each feature

Select 𝑅(𝑓)
1 , . . . , 𝑅

(𝑓)
𝑟 for 𝑈 𝐷𝐵(𝑓);

Index each 𝑈 𝐷𝐵(𝑓) using Alg. 1.

Given a search query 𝑄 having 𝑣 sequences for 𝑣 variables
and 𝑣−1 time delays between them, the goal of MTS search
algorithm (Alg. 4) is to return all matching multivariate
patterns from 𝑀 𝐷𝐵. To solve this, we first take the first
variable (call it 𝑄.𝑣𝑎𝑟(1)) of 𝑄 and do a search on the index
corresponding to feature 𝑄.𝑣𝑎𝑟(1). The FindCandidates
function in Alg. 4 performs this search by first finding a
candidate set from each index file of 𝑄.𝑣𝑎𝑟(1) and then
joining them over multiple reference points. This routine
is similar to Alg. 2 (except the disk access part). This
generates an MTS table as: {𝑀𝑇𝑆 𝑖𝑑,𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡1}.
Similarly, the next variable 𝑄.𝑣𝑎𝑟(2) is searched on the
relevant index. These two searches on the indices cor-
respond to the first level of pruning. At this point we
prune the candidates further by joining these candidate sets
(𝐶𝑎𝑛𝑑12) and noting that (1) all candidates in candidate
1 and candidate 2 must have the same 𝑀𝑇𝑆 𝑖𝑑, and (2)
the begin offsets between any two candidates from the two
sets must be delayed by an amount 𝛿1. The JoinCandidate
routine performs this join. By this second level of pruning,
we add another column to the table for the second vari-
able {𝑀𝑇𝑆 𝑖𝑑,𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡1, 𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡2}. Note
that until this point, we have not performed any actual disk

52



access, and searched only on the indices. We could continue
joining the candidate sets and create a compact set for all the
variables in 𝑄. However, in our experiments (not reported
here), we notice that the size of the candidate set after the
first two joins is very small and does not reduce further on
joining other candidate sets. We validated this for several
variables in the candidate sets; in most cases, the size of
the candidate set was less than 5% of the total number of
subsequences. Thus, heuristically it becomes redundant to
search for the remaining variables in the index. Instead, we
do a disk access to retrieve all candidates from 𝐶𝑎𝑛𝑑12 to
remove the false alarms. The resulting subsequences Cand
are the true nearest neighbors of 𝑄 considering the first
two variables. We continue to search the remaining variables
𝑄.𝑣𝑎𝑟(3 : 𝑣) by retrieving them directly from the disk after
noting that they must come from the same MTS and satisfy
the specified time delays.

Algorithm 4: MTS 𝜖-NN Search using 𝑅𝐵𝑆

Input: 𝑀 𝐷𝐵, 𝑄, 𝐼𝑛𝑑𝑒𝑥, 𝑅1, . . . , 𝑅𝑟 , 𝑤, 𝝐
Output: 𝜖-NN of 𝑄
begin

𝜖-NN ← ∅;
for 𝑖 = 1 to 𝑄.𝑣𝑎𝑟 do // each feature

𝐶𝑎𝑛𝑑𝑖 ← FindCandidates(𝑄.𝑣𝑎𝑟(𝑖));

𝐶𝑎𝑛𝑑← ∩𝑄.𝑣𝑎𝑟−1
𝑖=1 JoinCandidates(𝐶𝑎𝑛𝑑𝑖, 𝐶𝑎𝑛𝑑𝑖+1, 𝛿𝑖)

for 𝑐 ∈ 𝐶𝑎𝑛𝑑 do // remove false positives
Fetch 𝑐 from 𝑖-th MTS 𝐷𝑖𝑠𝑡1 = 𝑑𝑖𝑠𝑡(𝑐.𝑠𝑒𝑞1, 𝑄.𝑠𝑒𝑞1);
𝐷𝑖𝑠𝑡2 = 𝑑𝑖𝑠𝑡(𝑐.𝑠𝑒𝑞2, 𝑄.𝑠𝑒𝑞2);
...
if 𝐷𝑖𝑠𝑡1 ≤ 𝜖1 and 𝐷𝑖𝑠𝑡2 ≤ 𝜖2 and . . . then

𝜖-NN ← 𝜖-NN
∪{𝑐, 𝑖, 𝑗};

VI. ANALYSIS OF ALGORITHMS

In this section analyze the properties of the algorithms.

A. Correctness of 𝐿𝐵𝑆 and 𝑅𝐵𝑆

Theorem 6.1: Both 𝐿𝐵𝑆 and 𝑅𝐵𝑆 algorithms are cor-
rect i.e. they guarantee no false dismissals.

Proof: The proof is based on the triangle inequality. For
a reference point 𝑅, query 𝑄 and any arbitrary subsequence
𝑆, we can write by virtue of triangle inequality:

∣𝑑𝑖𝑠𝑡(𝑄,𝑅)− 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ < 𝑑𝑖𝑠𝑡(𝑄,𝑆).

Now for any query 𝑄 which belongs to 𝜖-NN of 𝑆,
𝑑𝑖𝑠𝑡(𝑄,𝑆) < 𝜖. Combining, we get

∣𝑑𝑖𝑠𝑡(𝑄,𝑅)− 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ < 𝑑𝑖𝑠𝑡(𝑄,𝑆) < 𝜖

i.e. 𝑑𝑖𝑠𝑡(𝑄,𝑆) < 𝜖 ⇒ ∣𝑑𝑖𝑠𝑡(𝑄,𝑅) − 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ < 𝜖 ⇒
𝑑𝑖𝑠𝑡(𝑄,𝑅) − 𝜖 < 𝑑𝑖𝑠𝑡(𝑆,𝑅) < 𝑑𝑖𝑠𝑡(𝑄,𝑅) + 𝜖. Since in
both 𝐿𝐵𝑆 and 𝑅𝐵𝑆, we retrieve all sequences from the
index in the range 𝑑𝑖𝑠𝑡(𝑄,𝑅) ± 𝜖, both these algorithms
guarantee no false dismissals.

B. Storage complexity of 𝐿𝐵𝑆 and 𝑅𝐵𝑆

For 𝐿𝐵𝑆, we need to insert every subsequence in the
sorted list for every UTS. Let 𝑇𝑖 be the length (number
of time points) of any MTS in the 𝑖-th file. The number of
subsequences for the 𝑖-th MTS is, therefore, 𝑇𝑖−𝑤+1. Given
there are 𝑑 variables in each of the MTS files, the number
of subsequences to process for the 𝑖-th MTS file is 𝑑(𝑇𝑖 −
𝑤 + 1). For ∣𝐷∣ total MTS files, we get the total number
of subsequences as, 𝑑

∑∣𝐷∣
𝑖=1(𝑇𝑖 − 𝑤 + 1). For 𝑟 reference

points, the overall storage complexity is 𝑂(𝑟𝑑
∑∣𝐷∣

𝑖=1(𝑇𝑖 −
𝑤 + 1)) = 𝑂(𝑟𝑑

∑∣𝐷∣
𝑖=1 𝑇𝑖). For 𝑅𝐵𝑆, the index storage

complexity is 𝑂(𝑟𝑑
∑∣𝐷∣

𝑖=1𝑀𝑖), where 𝑀𝑖 are the number of
MBR’s created from the 𝑖-th MTS. Since in general, 𝑀𝑖 ≪
𝑇𝑖, 𝑅𝐵𝑆 has a much lower index storage complexity.

C. Running time of 𝐿𝐵𝑆 and 𝑅𝐵𝑆

For 𝐿𝐵𝑆, the index building time is proportional to the
number of distances computed for each subsequence: 𝑤(𝑇𝑖−
𝑤+1). For 𝑑 variables, 𝑟 reference points and ∣𝐷∣MTS files,
the overall running time for inserting all the elements in the
index is 𝑂(𝑤𝑟𝑑

∑∣𝐷∣
𝑖=1(𝑇𝑖 − 𝑤 + 1)) = 𝑂(𝑤𝑟𝑑

∑∣𝐷∣
𝑖=1 𝑇𝑖).

Moreover, since 𝑟𝑑
∑∣𝐷∣

𝑖=1(𝑇𝑖 − 𝑤 + 1) elements need to
be sorted, the overall running time is the maximum of the
sorting time and the insertion time. For 𝑅𝐵𝑆, we need to do
some extra computation for checking the marginal cost of
each point. Let the time required for it be 𝜆. Therefore, the
overall time complexity is, 𝑂((𝑤+𝜆)𝑟𝑑

∑∣𝐷∣
𝑖=1(𝑇𝑖−𝑤+1)),

where we have ignored the time to insert 𝑀𝑖 MBRs in the
𝑅∗-tree.

The query time for both the algorithms is bounded by:
𝑂(max𝑖 ∣𝐶𝑎𝑛𝑑𝑖∣) + 𝑂(𝑤∣𝐶𝑎𝑛𝑑∣), where the max is taken
over all the candidate sets and the second term reflects the
time for actual disk access and exact computation.

D. Choice of reference points

The choice of the reference points is crucial to the
performance of our algorithms. From Th. 6.1, a point 𝑆 is
not a potential candidate to be the nearest neighbor of 𝑄 if
∣𝑑𝑖𝑠𝑡(𝑄,𝑅)−𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ > 𝜖, where 𝑅 is an arbitrarily cho-
sen reference point. This is because, by triangular inequality,
𝑑𝑖𝑠𝑡(𝑄,𝑆) ≥ ∣𝑑𝑖𝑠𝑡(𝑄,𝑅)− 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ > 𝜖 too. Therefore,
such an 𝑆 cannot belong to the set of nearest neighbors of
𝑄. If, on the other hand, ∣𝑑𝑖𝑠𝑡(𝑄,𝑅) − 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ < 𝜖,
then we cannot prune 𝑆 since 𝑑𝑖𝑠𝑡(𝑄,𝑆) can be greater
or less than 𝜖. Therefore, the goodness of 𝑅 can be eval-
uated based on the size of the following set: 𝒮 = {𝑆 :
∣𝑑𝑖𝑠𝑡(𝑄,𝑅) − 𝑑𝑖𝑠𝑡(𝑆,𝑅)∣ < 𝜖}. Minimizing the size of 𝒮
gives a good 𝑅. However, in the above formulation, 𝑄 is
typically unknown until query time, making the optimization
problem unsolvable. Our heuristic is to choose multiple
reference points randomly from the database with the hope
that each such point will prune many candidates and we can
only work with the intersection of these sets. Our extensive

53



0.01 0.05 0.1 0.2 0.4
0.6

0.7

0.8

0.9

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.05 0.1 0.2 0.4
0.7

0.8

0.9

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

2

4

6

8

10

12

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.05 0.1 0.2 0.4
0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

5

10

15

20

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

Figure 3. Variation of 𝜌 and 𝑡 (mean and std dev) for different 𝑤, averaged
over ten queries for random walk dataset. Left column shows 𝜖 vs. 𝜌 and
right column shows 𝑡 vs. 𝜌 for 𝑤 = 128, 256, 1024 from top to bottom
respectively. In most cases, 𝐿𝐵𝑆 shows higher prune rate while prune
rates of 𝑅𝐵𝑆 are comparable to 𝐹𝑅𝑀 . Also the running time of all the
algorithms are comparable; in most cases, 𝐿𝐵𝑆 has the least search time.

experimental results show the effectiveness of this simple
heuristic by choosing 3-5 reference points (see Fig. 6 and
Fig. 4).

VII. EXPERIMENTS

To validate the performance of the 𝐿𝐵𝑆 and 𝑅𝐵𝑆
algorithms, we have run a variety of tests using both uni-
variate and multivariate datasets. All algorithms have been
implemented in Matlab and run on a 64-bit 2.33 GHz quad
core dell precision 690 desktop running Red Hat Enterprise
Linux version 5.4 having 2GB of physical memory. We have
measured the following quantities:

∙ 𝜌 – the prune rate (=1 − ∣𝐶∣/𝑇 ), where 𝐶 and 𝑇 are
sizes of the candidate set and the number of sliding
windows

∙ 𝑡 – running time

A. Univariate dataset experiments

1) Dataset description and experimental setup: We have
used 2 univariate datasets for testing our algorithms which
have been used in the literature [8][9] for UTS subsequence
search. The first dataset is a random walk dataset generated
synthetically (500,000 points). The second dataset is a stock
market dataset having 329,112 entries. We have tested 3
algorithms on these datasets: (1) the FRM algorithm using
the adaptive MBR approach [8], (2) LBS, and (3) RBS.

We have measured 𝜌 and 𝑡 at varying window sizes 𝑤
(128, 256, 512, 1024) and the number of reference points
(1∼5). The default values of these parameters are fixed at

0.01 0.05 0.1 0.2 0.4

0.8

0.9

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

5

10

15

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.05 0.1 0.2 0.4
0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

5

10

15

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.05 0.1 0.2 0.4
0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.05 0.1 0.2 0.4
0

5

10

15

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

Figure 4. Variation of 𝜌 and 𝑡 (both mean and std dev) with the number of
reference points, averaged over ten queries for random walk dataset. Left
column shows 𝜖 vs. 𝜌 and right column shows 𝑡 vs. 𝜌 for ∣𝑟∣ = 1, 2, 3
from top to bottom respectively. In most cases, 𝐿𝐵𝑆 shows higher prune
rate while prune rates of 𝑅𝐵𝑆 are comparable to 𝐹𝑅𝑀 . Also the running
time of all the algorithms are comparable; in most cases, 𝐿𝐵𝑆 has the
least search time.

512 and 3 respectively. For each choice of 𝑤 and 𝑡, we
have experimented with five different 𝜖. The choice of each
𝜖 is such that the selectivity (i.e. actual number of nearest
neighbors/𝑇 ) ranges between 10−6 ∼ 10−1 [8]. 𝜌 and 𝑡
at each measurement point is an average over ten randomly
generated queries. We present the results in the next section.

2) Results: We summarize the results of 𝐹𝑅𝑀 , 𝐿𝐵𝑆
and 𝑅𝐵𝑆 in Figures 3 – 6. Fig. 3 shows the average and
standard deviation of 𝜌 and 𝑡 for each 𝜖, over ten queries
for the random walk dataset for different values of 𝑤. For
most of the thresholds, we see that the prune rate of 𝐿𝐵𝑆
is the highest. Also, the prune rates of 𝑅𝐵𝑆 tend to be
very close to the 𝐹𝑅𝑀 algorithm for smaller number of
reference points. One significant advantage of both 𝐿𝐵𝑆
and 𝑅𝐵𝑆 over 𝐹𝑅𝑀 is that the prune rates for the former
two algorithms can easily be controlled by increasing the
number of reference points; however this increases the
running time as well. Also, the prune rates for all these
algorithms increase with increasing 𝑤, due to lesser number
of windows to index. Fig. 4 demonstrates the performance of
the algorithms for varying number of reference points. As
expected, the prune rate increases with increasing number
of reference points. We have similar results for the random
walk dataset shown in the Figures 5 and 6. In this case,
𝑅𝐵𝑆 has a higher prune rate compared to 𝐿𝐵𝑆 or 𝐹𝑅𝑀 .

To sum up, both the 𝐿𝐵𝑆 and the 𝑅𝐵𝑆 algorithms offer
an excellent prune rate for UTS search. 𝐿𝐵𝑆 offers the best
prune rate of all the 3 algorithms compared here, but as

54



0.01 0.1 0.5 0.75 1

0.7

0.8

0.9

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.1 0.5 0.75 1
0.8

0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.1 0.5 0.75 1
0.8

0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

Figure 5. Variation of 𝜌 and 𝑡 (both mean and std dev) for different 𝑤,
averaged over ten queries for stock market dataset. Left column shows 𝜖
vs. 𝜌 and right column shows 𝑡 vs. 𝜌 for 𝑤 = 128, 256, 1024 from top to
bottom respectively. For this dataset, 𝑅𝐵𝑆 shows higher prune rate than
𝐹𝑅𝑀 or 𝐿𝐵𝑆. Also the running time of all the algorithms are comparable;
in most cases, 𝐿𝐵𝑆 has the least search time.

discussed before, suffers from large storage cost. On the
other hand, 𝑅𝐵𝑆 uses MBRs to group similar points and
hence can reduce the storage cost dramatically. In many
cases, this reduces the search time as well. However, since
the unit of search is an MBR (containing several points)
and not individual points (as in 𝐿𝐵𝑆), the prune rate of
𝑅𝐵𝑆 is lower than 𝐿𝐵𝑆. It also needs to be mentioned
that if the variables are not normalized, the MBR creation
heuristic (𝐼-adaptive in [8]) decides on the density of each
MBR based on 𝜖. Too high a value of 𝜖 packs more points per
MBR, reducing the number of MBRs. This, in turn, reduces
the prune rate. Lower values of 𝜖 fragments the MBRs to
only a few points in each. This increases the prune rate but
increases the index search time. We test with different values
of 𝜖 during building indices and always choose an 𝜖 in the
middle range of those reported here.

B. Multivariate dataset experiments

1) Dataset description: We have used two large multi-
variate datasets for demonstrating the search capabilities of
𝐿𝐵𝑆 and 𝑅𝐵𝑆 in the multivariate domain. To the best of
our knowledge, these multivariate datasets are much larger
than the datasets used in the literature for multi-dimensional
time series search. The datasets are described next.
C-MAPSS dataset: The first dataset is simulated commer-
cial aircraft engine data. The dataset contains 6,875 (=∣𝐷∣)
full flight recordings sampled at 1 Hz with 29 engine and
flight condition parameters. This dataset has 32,640,967
tuples. We have tested our algorithm with 16 variables only.

0.01 0.1 0.5 0.75 1

0.6

0.8

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.1 0.5 0.75 1

0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

0.01 0.1 0.5 0.75 1

0.85

0.9

0.95

1

Threshold (ε)

ρ

 

 

FRM
LBS
RBS

0.01 0.1 0.5 0.75 1
0

2

4

6

8

10

Threshold (ε)

R
un

ni
ng

 ti
m

e 
(t

)

 

 

FRM
LBS
RBS
Brute force

Figure 6. Variation of 𝜌 and 𝑡 (both mean and std dev) with the number
of reference points, averaged over ten queries for stock market dataset. Left
column shows 𝜖 vs. 𝜌 and right column shows 𝑡 vs. 𝜌 for ∣𝑟∣ = 1, 2, 3
from top to bottom respectively. In most cases, 𝐿𝐵𝑆 shows higher prune
rate while prune rates of 𝑅𝐵𝑆 are comparable to 𝐹𝑅𝑀 . Also the running
time of all the algorithms are comparable; in most cases, 𝐿𝐵𝑆 has the
least search time.

US Regional carrier dataset (CarrierX): The second
dataset is a real life commercial aviation dataset of a US
regional carrier consisting of 3,573 (=∣𝐷∣) flights. Each flight
contains 46 variables. Domain experts identified a subset of 9
variables which are important. There are 22,207,852 tuples.

For all the multivariate experiments, we have used 𝑤 =
𝐿(𝑄) = 256 and 3 reference points for both 𝐿𝐵𝑆 and 𝑅𝐵𝑆.

2) Results: We have tested 5 randomly chosen queries,
each with three different thresholds. For each query and
threshold combination, the selectivities of each ranges from
10−7 ∼ 10−6. We do not present the thresholds for each
variable here due to shortage of space.

The performance results of 𝐿𝐵𝑆 and 𝑅𝐵𝑆 on CMAPSS
and CarrierX are presented in Table I. The second column
refers to the five different queries we have run along with
the variables for each query. The next three columns show
the number of candidates generated for the first variable
(𝐶𝑎𝑛𝑑1), the second variable (𝐶𝑎𝑛𝑑2), and after joining
these two candidate sets 𝐶𝑎𝑛𝑑12 both for 𝐿𝐵𝑆 and 𝑅𝐵𝑆.
Column 𝐶𝑒𝑥𝑎𝑐𝑡 is the actual number of these candidates
which are found to be less than the threshold after doing
the exact calculation. The smaller the size of 𝐶𝑎𝑛𝑑12, the
fewer the number of actual disk accesses necessary. 𝜖-NN
column refers to the actual number of nearest neighbors of
the query after taking all the variables and time delays into
consideration. The last two columns show the prune rate
𝜌 = 𝐶𝑎𝑛𝑑12/𝑇 and the query time for 𝐿𝐵𝑆. Since the
query times for 𝑅𝐵𝑆 are very similar, we do not report

55



them here. For this experimental setup, the index building
time for 𝐿𝐵𝑆 and 𝑅𝐵𝑆 on the CarrierX dataset are 7 hrs
and 9 hrs respectively.

These results show that for the two large multivariate
datasets, for different queries and thresholds, the prune
rates are very high (∼ 95%). Also, we notice that the
sizes of the candidate sets are smaller for 𝐿𝐵𝑆 than
𝑅𝐵𝑆 for all the queries thereby generating fewer false
positives. However, the storage requirement of 𝐿𝐵𝑆 is
non-trivial. For example, for CarrierX, we need to index
approximately 22 million distances using each reference
point per UTS. The total storage requirement for the
index will be (22,000,000×(4+4+4)/(1024×1024)) ≈
250 MBytes, for each UTS, assuming we store
{𝐷𝑖𝑠𝑡,𝑀𝑇𝑆 𝑖𝑑,𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡} for each window
sequence as a float of (4+4+4) bytes. For 𝑅𝐵𝑆, let’s assume
that (1) we have 𝑀 MBRs on average for each reference
point, and (2) we store {𝑚𝑖𝑛 𝑀𝐵𝑅,𝑚𝑎𝑥 𝑀𝐵𝑅,
𝑀𝑇𝑆 𝑖𝑑,𝐵𝑒𝑔𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡, 𝐸𝑛𝑑 𝑜𝑓𝑓𝑠𝑒𝑡} for each MBR. In
our experiments we have 𝑀 = 5, 174, 619. Then the total
storage requirements (assuming 4 bytes for each) will be
(5,174,619×(4+4+4+4+4)/(1024×1024)) ≈ 98 MBytes,
lower than that of 𝐿𝐵𝑆. Also note that the query time for
most of the queries are extremely small considering the
large sizes of the datasets.

From these results we conclude that: (1) query execution
time of 𝐿𝐵𝑆 is expected to be much lower than 𝑅𝐵𝑆
due to higher prune rate, (2) 𝑅𝐵𝑆 has relatively higher
rate of false positives compared to 𝐿𝐵𝑆, and (3) the index
storage requirements of 𝐿𝐵𝑆 may be significantly higher
compared to 𝑅𝐵𝑆. However, the choice of 𝑅𝐵𝑆 vs. 𝐿𝐵𝑆
is application dependent.

C. Application: finding anomalous flights

We have used the MTS search algorithm to find flight
landing patterns which result in go around/aborted landing.
In many cases, an aircraft on approach to landing needs to
abort the landing, climb back on full throttle and try the
landing again. This can happen due to improper landing
configuration. Currently, most safety analysts study these
events based on only one variable at a time which gen-
erates a large number of false positives. These so-called
exceedences or anomalies can be indicators of safety issues.
The frequency of such events are tracked as a measure of
safety of operations. These events can aid significantly in
understanding the underlying causal factors.

We have searched for such incidents in the CarrierX
dataset using two variables: airspeed (in knots) and altitude
(in feet). A domain expert (a retired commercial pilot) has
helped us sketch a typical go around pattern as shown in Fig.
7. The left figure shows the variation in airspeed while the
right one shows the variation in altitude. Using such a query
as the input and thresholds 100, 4000 for the two variables,
we have searched the CarrierX dataset. The algorithm

0 50 100 150 200 250
120

140

160

180

200

220

240

0 50 100 150 200 250
1000

2000

3000

4000

5000

Figure 7. Typical pattern for “go around” in CarrierX dataset. Left plot
shows airspeed (knots) vs time while right plot shows altitude (feet) vs.
time.

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Time
0 200 400 600 800 1000 1200

0

2000

4000

6000

8000

10000

 

 

Airspeed

Altitude

0 200 400 600 800 1000
100

150

200

250

300

Time
0 200 400 600 800 1000

0

2000

4000

6000

8000

10000

 

 

Airspeed

Altitude

Figure 8. Examples of “go arounds” detected by our multi-variate search
algorithm on CarrierX dataset. The matching regions are highlighted.

returned 10 hits. Fig. 8 shows 2 such flight profiles. We have
plotted the altitude and airspeed on the same graph with the
left axis as the airspeed and the right axis as the altitude. A
visual inspection of each of these flights demonstrates the
usefulness of the algorithm in finding all the “go around”
patterns (no false positives). The highlighted portion shows
the matched time series for each of these plots which shows
that the algorithm is accurate at finding similar, not exact,
motifs, i.e., it has good noise tolerance. The average time
taken for running the query is approx. 12 secs.

VIII. CONCLUSION

In this paper we present two algorithms 𝐿𝐵𝑆 and
𝑅𝐵𝑆 for finding multivariate subsequences from large
MTS datasets. Both these algorithms guarantee no false
dismissals. 𝑅𝐵𝑆 algorithm is novel in the sense that it
organizes subsequences into MBRs and uses multiple ref-
erence points to reduce false positives. To the best of our
knowledge, using spatial indexing along with multiple global
reference points for time series subsequence search has
never been explored before. Experiments on two massive
commercial aviation related MTS datasets show that both
these algorithms offer excellent prune rates (greater than
0.95). The CMAPSS and CarrierX datasets that we have
tested are much bigger than any of the MTS datasets used
in the literature for multivariate subsequence search. As an
application of the proposed method, we have shown how it
can be used for finding a critical safety pattern from real
aviation dataset, that of aborted landings. For future work,
we plan to implement this algorithm on Map-Reduce and
explore other distance measures such as time warping.

ACKNOWLEDGEMENTS

This work was supported by the NASA Integrated Vehicle
Health Management Project and a NASA-Google Annex.

56



Table I
RESULTS OF 𝐿𝐵𝑆 AND 𝑅𝐵𝑆 CMAPSS AND CARRIERX DATASET FOR FIVE DIFFERENT QUERIES AND THREE DIFFERENT THRESHOLDS PER QUERY.
FOR BOTH 𝐿𝐵𝑆 AND 𝑅𝐵𝑆 , THE PRUNE RATES ARE ALWAYS GREATER THAN 0.95, SIGNIFYING THAT LESS THAN 5% OF THE CANDIDATES NEED TO

BE RETRIEVED FROM THE MTS DATABASE FOR EXACT CALCULATIONS.

Queryid
∣𝐶𝑎𝑛𝑑1∣ ∣𝐶𝑎𝑛𝑑2∣ ∣𝐶𝑎𝑛𝑑12∣ 𝐶𝑒𝑥𝑎𝑐𝑡 ∣𝜖-NN∣ Prune rate 𝜌

Time (secs)
𝐿𝐵𝑆 𝑅𝐵𝑆 𝐿𝐵𝑆 𝑅𝐵𝑆 𝐿𝐵𝑆 𝑅𝐵𝑆 𝐿𝐵𝑆 𝑅𝐵𝑆

CMAPSS

1: (25, 27, 4)
18409 3007594 738 2477549 52 801400 6 6 0.9999 0.9741 2.63
81409 3263815 7567 2565309 2668 1003839 17 10 0.9999 0.9675 102.91

251981 3841664 81330 2702600 23694 1454776 540 297 0.9992 0.9529 291.8

2: (20, 29, 5)
53585 870835 14969 2390063 1411 266022 252 6 0.9999 0.9914 6.91

179850 1295644 50502 2454707 13862 481096 1187 17 0.9995 0.9844 130.91
317793 1587719 141444 2633060 58905 633137 20124 259 0.9981 0.9795 710.12

3: (5, 15, 28)
528470 4753958 14725 306706 6171 290593 453 8 0.9998 0.9906 201.13

1137522 4861533 87236 425813 63690 399972 16289 121 0.9979 0.9871 770.18
2115994 5101127 177992 550198 174391 536022 79332 1445 0.9944 0.9826 945.1

4: (26, 5, 27)
1311 2013861 57144 3655449 344 86193 5 3 0.9999 0.9972 23.1
34492 2143905 193974 3894274 8034 194616 2060 337 0.9997 0.9937 41.1

115350 2317163 501207 4634240 38648 609697 22034 6471 0.9987 0.9803 99.13

5: (5, 23, 2)
101344 4010042 74609 878140 12945 114419 18 9 0.9996 0.9963 141.98
316085 4101886 164881 1160134 49908 203004 332 49 0.9983 0.9934 121.9
771259 4356479 337201 1521911 150020 375037 4925 479 0.9951 0.9879 821.1

CarrierX

1: (29, 23, 28)
26235 469928 55610 530788 96 10226 3 3 0.9999 0.9995 3.69
79606 523225 204310 716418 952 14391 15 15 0.9999 0.9993 9.41

133451 583050 374437 896063 2640 20771 27 27 0.9998 0.999 15.58

2: (8, 28, 27)
17338 1120516 16541 74930 450 26361 3 1 0.9999 0.9987 28.56
48149 1174920 62316 267710 3595 92246 7 3 0.9998 0.9957 119.32
83177 1218440 1577348 3028623 54214 754404 885 9 0.9974 0.9645 694.94

3: (38, 8, 29)
935844 870535 223138 391564 71342 94594 12318 7 0.9966 0.9955 69.4

1500995 1369274 379346 555599 175800 213822 48395 64 0.9917 0.9899 147.69
1760160 1564834 527712 705614 277017 313020 102401 269 0.9869 0.9853 197.97

4: (6, 27, 30)
22039 2164753 13866 901583 71 402047 10 10 0.9999 0.9811 3.01

103096 2289089 156448 1033504 2204 477704 30 30 0.9998 0.9775 17.7
213954 2429383 351061 1196446 9408 568003 48 48 0.9995 0.9733 44.01

5: (28, 8, 29)
1298247 2671533 184660 1649628 76445 476399 47559 2 0.9964 0.9776 64.63
1947774 3368141 205164 129643 105286 29617 78467 125 0.9951 0.9986 92.95
5161965 6417365 227501 1735525 168155 972349 136137 882 0.9921 0.9543 197.27

The authors would also like to thank Dr. Matthew E. Otey
and Bryan Matthews for their valuable suggestions.

REFERENCES

[1] K. Yang and C. Shahabi, “A PCA-based Similarity Measure
for Multivariate Time Series,” in Proceedings of MMDB’04,
2004, pp. 65–74.

[2] ——, “An Efficient 𝑘 Nearest Neighbor Search for Multivari-
ate Time Series,” Inf. Comput., vol. 205, no. 1, pp. 65–98,
2007.

[3] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh, “Indexing Multi-Dimensional Time-Series with
Support for Multiple Distance Measures,” in Proceedings of
KDD’03, New York, NY, USA, 2003, pp. 216–225.

[4] S. Lee, S. Chun, D. Kim, J. Lee, and C. Chung, “Similarity
Search for Multidimensional Data Sequences,” in Proceedings
of ICDE’00, 2000, pp. 599–608.

[5] K. Yang and C. Shahabi, “A PCA-based Kernel for Ker-
nel PCA on Multivariate Time Series,” in Proceedings of
ICDM’05 Workshops, 2005, pp. 149–156.

[6] ——, “A Multilevel Distance-Based Index Structure for Mul-
tivariate Time Series,” in Proceedings of TIME’05, Washing-
ton, DC, USA, 2005, pp. 65–73.

[7] E. Keogh and C. Ratanamahatana, “Exact Indexing of Dy-
namic Time Warping,” KAIS, vol. 7, no. 3, pp. 358–386, 2005.

[8] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast
Subsequence Matching in Time-series Databases,” SIGMOD
Rec., vol. 23, no. 2, pp. 419–429, 1994.

[9] Y. Moon, K. Whang, and W. Loh, “Duality-Based Subse-
quence Matching in Time-Series Databases,” in Proceedings
of ICDE’01, Washington, DC, USA, 2001, pp. 263–272.

[10] C. Traina, R. Filho, A. Traina, M. Vieira, and C. Faloutsos,
“The Omni Family of All-purpose Access Methods: A Simple
and Effective Way to Make Similarity Search More Efficient,”
The VLDB Journal, vol. 16, pp. 483–505, 2007.

[11] W. Han, J. Lee, Y. Moon, and H. Jiang, “Ranked Subse-
quence Matching in Time-Series Databases,” in Proceedings
of VLDB’07, 2007, pp. 423–434.

[12] A. Mueen, E. Keogh, and N. Bigdely-Shamlo, “Finding Time
Series Motifs in Disk-Resident Data,” in Proceedings of
ICDM’09, Miami, 2009, pp. 367–376.

[13] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces,” in
Proceedings of VLDB’97, 1997, pp. 426–435.

[14] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and M. Westover,
“Exact Discovery of Time Series Motifs,” in Proceedings of
SDM’09, 2009, pp. 473–484.

57


